Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 315: 108850, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31634447

RESUMO

1,2,3-triazolium salts are poorly understood regarding their antileishmanial activity. Hence, as an effort to identify novel chemical scaffolds as antileishmanial agents, a series of 1,2,3-triazolium salts (TS) and corresponding 1,2,3-triazole (T) precursors including new epoxide derivatives were synthesized and assayed against Leishmania amazonensis promastigote and intracellular amastigote forms. Among them, the compound TS-6 exhibited promising activity on promastigotes (IC50 = 3.61 µM) and intracellular amastigotes (IC50 = 7.61 µM) of L. amazonensis, superior to miltefosine (IC50 > 10.0 µM), used as reference drug. In addition, TS-6 showed negligible cytotoxicity on murine peritoneal macrophages with a SI of about 10. Studies on the mode of action of TS-6 indicate mitochondrial dysfunction through an increase in 'total' and mitochondrial-ROS as well as depolarization of mitochondrial membrane potential of L. amazonensis promastigotes. In silico physicochemical studies indicate that the TS-6 could potentially be used as an oral drug.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Animais , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia
2.
Inorg Chem ; 58(11): 7156-7168, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31117620

RESUMO

Copper(I) complexes are seen as more sustainable alternatives to those containing metal ions such as iridium and platinum for emitting devices. Copper(I) complexes have the ability to radiatively decay via a thermally activated delayed fluorescence (TADF) pathway, leading to higher photoluminescent quantum yields. In this work we discuss six new heteroleptic Cu(I) complexes of the diphosphine-diimine motif. The diphosphine ligands employed are (oxidi-2,1-phenylene)bis(diphenylphosphine) (DPEPhos), and the diimine fragments are sulfur-bridged dipyridyl ligands (DPS) which are functionalized at the 6,6'-positions of the pyridyl rings (R = H, Me, Ph) and have varying oxidation states at the bridging sulfur atom (S, SO2). The proton (Cu-DPS, Cu-DPSO2) and phenyl (Cu-Ph-DPS, Cu-Ph-DPSO2) substituted species are found to form monometallic complexes, while those with methyl substitution (Cu-Me-DPS, Cu-Me-DPSO2) are found to have a "Goldilocks" degree of steric bulk leading to bimetallic species. All six Cu(I) complexes show emission in the solid state, with the photophysical properties characterized by low temperature steady-state and time-resolved spectroscopies and variable temperature time-correlated single photon counting. Cu-DPS, Cu-DPSO2, Cu-Me-DPS, Cu-Me-DPSO2, and Cu-Ph-DPSO2 were shown to emit via a TADF mechanism, while Cu-Ph-DPS showed photoluminescence properties consistent with triplet ligand-centered (3LC) emission.

3.
Chem Biol Interact ; 291: 253-263, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944877

RESUMO

Triazoles are interesting templates for novel chemotherapeutic drugs. We synthesized here 17 1,3,4-substituted-1,2,3-triazoles that differed in their 1'-substituent (variable alkyl chain lengths C3-C12), the 3'-substituent (no substituent, -methyl or -propyl) or the salt form obtained. Several of the compounds were cytotoxic (µM range) for tumor cells (HL-60, Jurkat, MCF-7, HCT-116), and when the effect was compared to non-transformed cells (Vero), selectivity ratios of up to 23-fold were obtained. To estimate the liability of these potential drug candidates for triggering neurotoxicity, we used the LUHMES cell-based NeuriTox assay. This test quantifies damage to the neurites of human neurons. The four most potent tumoricidal compounds were found to be neurotoxic in a concentration range similar to the one showing tumor cell toxicity. As the neurites of the LUHMES neurons were affected at >4-fold lower concentrations than the overall cell viability, the novel triazoles were classified as specific neurotoxicants. The structure-activity relationship (SAR) for neurotoxicity was sharply defined and correlated with the one for anti-neoplastic activity. Based on this SAR, two non-neurotoxic compounds were predicted, and testing in the NeuriTox assay confirmed this prediction. In summary, the panel of novel triazoles generated and characterized here, allowed to define structural features associated with cytotoxicity and neurotoxicity. Moreover, the study shows that potential neurotoxic side effects may be predicted early in drug development if highly sensitive test methods for neurite integrity are applied.


Assuntos
Neoplasias/patologia , Neurotoxinas/toxicidade , Triazóis/química , Triazóis/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...